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ABSTRACT 

Effects of horizontal stochastic bottom structure on acoustic intensity in an 

isospeed ocean have been studied previously by the authors [J. Acoust. Soc. 

Am. 76_, 1445-1455 (1984)]. The bottom density and sound speed were taken to 

be random and ray theory was used. In this study we add a rough water-bottom 

interface, consisting of large-scale, two dimensional random facets upon which 

small-scale roughness may be superimposed. Each facet is assumed to possess 

small random depth deviation, slope, and curvature. Initially, we take acous- 

tic rays to be specularly reflected from the facet bottom, and derive expres- 

sions for the mean and variance of incoherent intensity at a point receiver 

for a transmitted cw signal. The results are sufficiently general to permit 

their use with different bottom-acoustic models, but we employ Mackenzie 

theory here. Relative effects of structure and topography are compared. Sub- 

sequently, small-scale roughness is superimposed on the facets, and the added 

consequences of scattering are considered. 



INTRODUCTION 

Acoustical consequences of bottom characteristics are well known to be 

particularly important in shallow water, because of the extensive interaction 

between sound waves and the bottom. This complication is compounded by geo- 

logical processes causing sedimentation in shallow water, so that there is 

usually a larger degree of lateral variability in bottom composition than in 

the deep ocean.^ 

Effects of bottom topography on acoustic signals have been studied ex- 

tensively (e.g., Ref. 2). The influence on sound propagation of horizontal 

ocean bottom structure, which is regarded as being characterized by its 

density and sound speed, has also received attention (e.g., Ref. 3). A few 

investigations have discussed the situation when both types of bottom varia- 

tions are assumed present.'♦•^ However, none of which we are aware has studied 

their relative effects, or has used the statistical methods presented here. 

Since structural and topographical properties are typically not well known, it 

is appropriate to model them in a statistically random fashion. 

In this paper, we use the ray theory of propagation, and the vertical 

plane containing the point source and receiver is taken normal to a two-dimen- 

sional rough bottom. The acoustic field at a point receiver is composed of 

individual ray arrivals which are transmitted from an omnidirectional cw 

source. In much of this study, ray paths between the source and receiver are 

determined by specular reflection from a bottom with large-scale roughness and 

from a horizontal ocean surface. Hence, all rays are coplanar. Because we 

are assuming an ocean of shallow depth, the water is taken to have constant 

sound speed and density. Our primary objective is to determine statistics of 

incoherent intensity at a receiver in terms of statistics of the bottom struc- 

ture and topography. 



In an earlier paper by us,^ the influence of horizontal structural 

variations alone on acoustic propagation was investigated. We use similar 

methods here, and assume the bottom has small random variations in sound speed 

and density in the horizontal direction. We generalize our previous investi- 

gation by permitting a rough water-bottom interface. At first, we consider a 

bottom composed of a collection of large-scale facets. Other studies have 

used such a facet-bottom model to include roughness effects.^»^ Our facets 

are characterized in part by the locations of bottom-reflection points of an 

"ideal" ray from a horizontal bottom. Each facet is assumed to have a small 

random inclination angle and depth deviation. In addition, each facet has 

curvature and the radius of curvature is taken to be large with respect to 

acoustic wavelength. Consequently, the curvature of each is modeled as a 

random variable with small magnitude. Subsequently, small-scale roughness is 

added to the facets. 

In Sec. I, we present expressions for bottom loss and spreading loss, 

approximating both by truncated Maclaurin series. In Sec. II, expressions for 

mean incoherent intensity and its variance are developed. Mackenzie bottom 

loss and reasonable correlation functions for our bottom random variables are 

incorporated into our equations. Section III presents, and provides discus- 

sion of, numerical results obtained from the model in Sec. II. In Sec. IV, we 

superimpose microroughness onto our random facets, and examine their conse- 

quences on intensity. A summary of principal results appears in Sec. Y. 

I.  BASIC FORMULATION 

Using the notation of Ref. 3, we consider an isospeed sound channel of 

mean depth H. The xy-plane contains a point source S at (O.hs) and a receiv- 

ing point R at (R,h[^). In Fig. 1 an "ideal" ray rnj appears as the dashed 
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curve. This ray has initial angle 6]^.'  at the source, the same angle magni- 

tude at the receiver and at each bottom reflection. As indicated in Fig.l, 

all angles are measured positive clockwise from the positive x-direction. The 

index j can take on integer values from 1 to 4, depending on the orientation 

of the ray at the source and receiver. In Fig. 1, j has the value one, which 

corresponds to a ray with downward direction at the source and upward 

direction at the receiver. The ray r . intercepts the mean bottom n times at 

the points [x.. , H), i = 1, ..., n. 

Also shown in Fig. 1 is the corresponding "actual" ray r ., which 

appears as the solid curve. The initial angle of this ray is denoted by e . . 

It intercepts the two-dimensional water-bottom interface n times at the points 

(x^. , y^ . ), i =1, ..., n. It can be shown that, for a bottom that deviates 

only slightly from y = H, there is an actual ray r^ corresponding to each 

ideal ray r . for each ordered pair {n,j). 

no 

(n)  (n) 

(x^-j , y^j ) by a., and the incident angle r^. (i.e., the angle the incident 

The tangent line to the bottom at the point (x-- , y-^ ) intercepts the 

line x = x.. at a depth that differs from H by the signed quantity V... 

Thus, P.. is one measure of the depth deviation of a bottom facet. It is 

positive (or negative) when the facet depth is greater (or less) than H at xl"^ 

We denote the small inclination angle of the tangent line to the bottom at 

IT . y^i J by a., and the incident angle r . 

ray makes with the x-direction at the bottom reflection) by e.. . When the 

bottom facet in the neighborhood of the point of reflection is concave down, 

as is the case shown in Fig. 1, we take the "signed curvature" <..'  to be 
ij 

positive, and when it is concave up, <""' is negative. Thus, at (x^."^' y^."^) 

the bottom has a radius of curvature A.'j = l/l^^" |. Hereafter, a primed 

length quantity denotes its normalization with respect to the mean depth H 



[e.g.. h^ = h^/H). We consider &\^\  PJ^^', and KJJ^' = H<J.J^ to be random 

variables of the bottom topography with small magnitudes. 

The grazing angle \|».. of ray r . is the angle between the incident ray 
I J M J 

and the tangent line to the bottom at (x..   » y..   ),  assuming specular reflec- 

tion.    This angle is measured positive clockwise from a tangent line to the 

bottom in the ray direction.    The grazing angle can be written in terms of a 

Maclaurin series in powers of a:.*?^  and    P^"'   .    This series,  truncated after 

linear terms in these variables,  is given by 

1J OJ ^IJ      ' 

where 

.!"^ - 2    I { J_[2(n-£) -1 - Xh'] aj,"^ .      .    «'_, v\f} 

^ j^fl ^0    -  ^ij    • 

In Eq.   (2),  u'.  is the normalized version of the total  vertical  distance u   . 
"J nj 

traveled by the mean ray r  ., where nj' 

"u^. = 2n H + V h - X h . <3) 
nj s    r 

The symbols v and X are parameters defined by 

V = (-l)J (4) 

and 

X = (2.5 - j)/l2.5-j| . J5) 

We turn next to our model for the structure of the bottom. We consider 

(n: 

ij 
variations in the horizontal xy-plane, both in the bottom density p   and 

sound speed c   at the ith bounce of ray r^^. We write 
ij "J 

p..  /p, = (P2/Pj(l + e^.j ) . lt>) 
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where p is the constant horizontally - averaged density of the bottom, p^ 

is the constant water density, and e.^ is a small random quantity. Similarly, 

C,/C;^' = (C/C,)(1* 6l3>) . (7) 

where c and c are the constant water sound speed and the mean bottom sound 

speed. The quantity 6_ is another small random variable. As discussed in 

Ref. 3, it is possible to approximately relate c^ and 6^"' to p. and e " , 2 ij 2 ij 

respectively,  by the equations 

C2[P2) = 2270.9  -  1194.4p2 + 474.Sp^ ^^^^ 

and 

(n)  _ (n) {8b) 
. •       ^ij    " ■ ^  *ij    • 

For convenience in the expansions to follow, we assume that the three topo- 

graphical random variables, V.-    , a.. , and K.. , and the two structural 

random variables, e."^ and 6^1 , are of the same small order of magnitude. 

This enables us to keep terms of like degree in all variables. Different 

orders can, of course, be assumed, so long as all expansions are performed with 

consistency. 

The sound source S emits a unity - amplitude cw signal, which arrives at 

the receiver R along ray r . with amplitude a .. For the large-scale facet 

bottom, the received amplitude is taken to differ from unity because of geome- 

trical spreading loss and bottom loss. Other losses could be included, but 

will not be considered here. We may write 

a .  = A"!/^ B . , (9) 
nj   nj   nj 

where A . is the spreading loss and B . is the total bottom loss. In Ref. 
nj      ^    ^        no 

8, a spreading loss equation is derived for rays specularly reflected from 

a bottom composed of large-scale curved facets. Truncated to linear terms. 
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it is 

\, - «^««" ^ V) ^ i", t^%o "ir ^ ^^^' =sr ^"'' ]i. (10) 

•nj 

where ^..    is given by 

"ij^ =  (R'^/"nj "" ^)   [-"^^^ -^ 2(2n + 2 - Xh*  - vh^)i  - (1  - vh') (11) 

X [Zn + 1 - Xh')]  . 
R 

This formula is valid if n is not too large. Note that, to first order, the 

slopes a., of the facets do not contribute to A .. For any particular ray 

r ., the effects of the depth deviations V..      are the same for each bottom 
nj' "^ ij 

reflection because the term multiplying V..      is independent of i. However, 

In)' 
the random variables K^^  are weighted according to which bottom is consid- 

ered; the curvature of bottom facets near midrange has the greatest effect, 

and that near the source and receiver has the least influence. 

In Eq. (9), the decrease B  in amplitude due to all the bottom losses 

of ray r^. is ^ 

B  .  =    TT    BJ,"?^   , (12) 
nj       .^^    nj     ' ^'■'-> 

where   R,.    is the reflection coefficient of r  . at its i^^ bottom bounce.    We 
ij nj 

assume that the coefficient   B..    depends on both grazing angle and bottom 
( n\ 

Structural  properties.    It is then possible to expand   B..    in a Maclaurin 

series with respect to the random variations of these quantities.    To first- 

order terms,  there is then an expression with the form 

ij nj        nj  ij nj nj nj^ij    ' 

(n\ 
where u.. is given by Eq. (2). The coefficients of the random variables in 

Eq. (13) depend on the reflection theory used and the mean bottom values 
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selected. 

II.  INTENSITY MOMENTS 

We consider two measures of the sound field at the receiver. These are 

the mean and variance of the incoherent intensity I, given by 

N  t  2 
I =    Z      Z   a  . (14) 

n=0 j=l no * 

Because the losses experienced by successive ray arrivals grow rapidly, we 

need consider only those rays experiencing some number N or fewer bottom re- 

flections. Specifically, we elect to neglect ray arrivals which have ampli- 

tudes less than 1% of the arrival with largest amplitude. 

We wish to determine expressions for the mean and variance of I, 

y(I) = Ed) (15) 

and 

a2{I) = E(l2) - £2(1) ,        : , (16) 

where E denotes expectation and I is a function of the five types of random 

variables introduced in Sec. I. We assume that the mean of each type is zero, 

E(.ij') = E(a5^"') = E(.<f) = E(aSf) = E(^"'Vo.    (17) 

and that each type has a constant standard deviation, 

(18a) 

o[«-j^) = o^ , {18b) 

a[aV.") = a - (18d) 
ij ^  -a 

and 

o[<ij^') = o^,   . (18e) 
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We also assume that any two different topographical variables are uncorrelated, 

and that topographical and structural random variables are not correlated. For 

example, the concavity at a bottom reflection is taken to be uncorrelated with 

both the depth deviation and the density there. However, we do allow each ran- 

dom variable to be correlated with itself at two separate bottom reflections. 

Thus, 

(19b) 

and 

rr An)   Am) ^ _ 2  . (n)  (m), 
^^\j    ^£k ^ - °6 ^a^^j ' ^k ^ ' 

. (n)' Jm)\   2    .Jn)' „(m)' . ^ ^ 

Pf-(n)  (m). _ 2 p r (n)  (m). /,q.x 

pf (n)'  (m)\   2 ^ . (n)'  (m)' ^  ^ 

In Eqs. (19), any function C{a,b) represents the correlation coefficient of the 

random quantities a and b. Also, the structural random variables e^."^ and e^-"^ 

are correlated as in Ref. 3, so that 

cr (n) r(ni) ^      p r (n) A^) ^ 
^^^ij  ^k ^ = \',   ^ed^Sj ' «£k ) • (19f) 

Using the particular relationship given by Eq. (8b), we may write 

,2 n r^(n) Mh  _ ./. _2 p r_(n)  (m) 
<c.(*;j.C) = i/^<^.(<-'.4r).       (20^) 

and 

.(n)  (m)s _ -,„ 2 _ , (n)  (m) ^ r,    r    r^^"'  X^'"M   T/O -^ P r vn   ^mK (20b) 

so that we have only one correlation function c for the structure. 

It is now possible to determine yd) and a^{l).    Keeping through first- 

order terms in the random variables for the mean, we have 
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^       'I     .2n ,r..2rr,'2 . -' 2-n (2I) 

n=0 j=l  ■^ ^ 3 

In Eq. (21), A . and H fR  + u . 1 represent the leading-order terms of the 
nj     ^     nj ' 

bottom loss and spreading loss, respectively (see Eqs. (13) and (10)). No 

first-order terms appear in Eq. (21) due to the assumptions of Eq. (17). We 

keep through second-order terms in the variance so that the standard deviation 

is correct to first order. Therefore, for the variance, we obtain an expres- 

sion of the form 

o^(I) = V a^ + V^,a?, + V a^ + V ,a^ • (22) 
ee   V   U aa   <ic 

2 2 2 2 The quantities Y 0    , Vi^.On,   , V  0    , and V   ,a ,   in Eq.   (22)  represent symboli- 

cally the contributions to the variance from the bottom structure, depth devia- 

tion,  slope,  and curvature.    After much manipulation,  the coefficients can be 

found as the following formulas: 

N      N      4      4              .2n-l  .2m-l 
V    = i_    E      I      I      I ^"J      ^"^k  fB   .B . - B  .C 

^      H'* n=l m=l j=l k=l    (R'2 + u;?)(R'2 + ^1^2)      "J "i*^      "J '"'^ 

V  ,= li    z      z      z      z  ^nj Pmk  (*< ^nj  " _ ^^'   ) 
^      H"* n=l m=l  j=l  k=l   (R'2 + U;?)2(R'2 + u'?)2 Apj "J 

(23a) 

X 

Amk ""^    i=i £=1   t?     iJ Ak    ^ 

(23b) 

.      N      N     4      4 2n-l ,2m-l ^     ^ n     m 
V    =1.   Z      z      z      Z      finj      Amk      Dnj Dmk j.      ^    |[2(n-i) 

H^ n=i 0.1 0=1 k=i   u;. u;,(R'2. u;2](R.2. ^^2) ,.., ,-_, ^^^^^ 

(n)      (m) + i]vh; + (2i-i)xh;}{[2(m-£) + ijvh; + (2£-i)xh;} c^[a\''.\ a\l^] , 
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and 
N     •^     4     4                         .2n .2m 

V    = 4_   j;      I     I     I    ^nj %k  
"'    H** n=l m=l j=l k=l F, u'   (R'^ + U'2)(R.2 + ^' 2 

nj    mk '■ nj -' ^ mk 

1=1  A    ij    "^k    ^<'^S-j      ^£k    )  • 

(23d) 

Note that the variance depends only on the first-order coefficients B   .. C   . 
^^ nj' ^-nj' 

and D . of the random variables in Eq. (13), and not on any second-order 

coefficients. That is, even if the coefficients of second-order terms were 

somehow known in Eq. (13), these would not appear in Eqs. (22) and (23), due 

to the averaging process. 

Investigation of Eqs. (21) and (22) for the mean and variance of inten- 

sity requires specification of a bottom reflection model. We choose here to 

use Mackenzie's model,^ in which the reflection coefficient is given by 

r,(n)   rri.      •  ,("^9  u9-|l/2 Bij  = [[\  -   0  Sin il^.j )2 + hf] 

X  [(h^ + a Sin ^\f]^^ h_2  ]-'/'  . 

(24a) 

where 

h^ =  {± 9 +  [(a/e)2 + g2]i/2}^/2  . (24b) 

9 =i [1 -   [V2/CJ2 cos2 ^\f  .  {a/3)2]  , (24c) 

and 

(n) 
ij 

0=  P^.j    v^/p.c^  . (24d) 

The quantity a  is the impedance and v is the phase speed of acoustic waves in 

the bottom and, to an excellent approximation, is given by v = c('?'. The 

quantity a/g is the ratio of the imaginary to real parts of the wave number of 

acoustic waves in the bottom. This term provides a dissipative mechanism for 



11 - 

sound which enters the bottom. In Ref. 3 it is explained how values for a/e 

are determined from formulas derived by Hamilton.^° 

Using Mackenzie theory, we obtain expressions for the coefficients A ., 

B ., C ., and D„. which appear in Eq. (13). They are calculated to be nj' nj'    nj      '^'^ ^ 

nj   nj nj ' 

B . = Q . fS . - P . 1/[ (M"*" • 1 ^M" 1 , (25b) nj  ^nj ^ nj   nj^ '■^ nj'' n-" ' 

C   .  = Q   . P   fP   .  + S   .  - 4T   .) + Q   •   [S   .  - P   . 1 
nj      ^nj        *■ nj       nj nj ^      ^nj   ^ nj       nj -^ 

X  [P   .(M^l'(M^)]-^ cos'"^^"^   , (25c) 
i- nj '^ nj -'  ^ nj -' -I oj    ' 

and 

where 

)   .  = R'Q   .[S  .(1 - 1/p^) - P   . +  (S^/p^ + 4T   .c sin|e^"Ml/P   .1 
nj          ^nji- nj*^ ' "^  ^       nj      '^ nj               nj             nj     ^'   nj J 

X  [■;!'.(M^)v.]-' ,                                                                                 (25d) 
'^ nj ^ nj -^    nj J ' 

Q   . = 2a  [T   .  +   (a2/32 + T   .2)l/2jl/2 sinl'e^"^   ,                              (25g) 
nj            •• nj      •-    ' "^         nj   -•      ■■ '  oj  '   ' 

S  . = 7^ sin^ "e^"^   , (25h) 
nj                        OJ    ♦ ^'^^"' 

T^j = 1  [1 -? cos"^^J^ -  a2/32]  , (25i) 

and 

o = c p  , (25j) 

c = c^/c^  , 

■p = P2/P1  • 

(25k) 

(25£) 
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The above formulas reduce to those in Ref. 3 where the bottom was horizontal. 

The notation has been changed slightly, however. 

To evaluate the intensity variance in Eq. (22), we also need to specify 

correlation coefficients for the random variables. We choose the Gaussian 

forms 

P  (  {r\)      (m)^     r . (n)   (m)^2 2 /OCN 

Vij ' ^iik ^ = ^^P t"^N-j - ^£k J /^'l ' (26b) 

^a^^ij ' ^£k ) = ^^P [-^^j - ^k ^ /LJ , (26c) 

^<'^^ij  ' '£k  ^ = ^^P f-^N-j - 4^ /^'^ ' (26d) 

and 

Here, |x   - x  | is the horizontal distance between the i^*^ bottom reflection 

of ray r.  and the £ th bottom bounce of ray r . . The parameters L , L , L , 
mK e  D' ' a' 

L^, are the correlation lengths associated with each random variable, and each 

represents the value of |xj"^ - ^^^ \  where c takes the value 1/e. The correl- 

ation function for the bottom sound speed variation 6.. is related to C bv 

Eqs. (20). Of course, other forms for the correlation functions could be used, 

if desired or if suggested by bottom observations. 

III.  NUMERICAL RESULTS 

We now investigate the behavior of the mean and variance of the received 

incoherent intensity, Eqs. (21) and (22), respectively. We incorporate expres- 

sions from Eqs. (23) into the variance and use the Mackenzie bottom model 

formulas, Eqs. (24) and (25), for the coefficients of bottom loss and spreading 

loss. For the correlation coefficients in the variance, we use the Gaussian 

forms shown in Eqs. (26). As indicated in the theoretical development, our 

expressions apply to relatively large-scale topographical variations. 
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Graphs of the moment ratio 

Mj^ = 10 log^jj y(I)/a(I) (27) 

will  appear in our figures.    This is,  in effect,  a signal-to-noise ratio in dB. 

Small  (i.e., large negative) values for M^ mean that the fluctuation in inten- 

sity is large relative to its mean.    Conversely, large (positive)  values 

correspond to the standard deviation being small compared to the mean,  i.e. a 

stronger "signal." 

For convenience in our numerical calculations, we place the source and 

receiver on the ocean surface. Of course, other configurations could be used 

without difficulty, if desired. The density and sound-speed values in the 

water are taken to be p = 1.025 g/cm^ and c = 1523 m/s. We found, for the 

parameter values chosen, that a maximum number N of at most 7 bottom reflec- 

tions needed to be included for any aspect ratio R', according to the criterion 

presented in Sec. II. Rays with a greater number of bottom reflections were 

shown to negligibly affect the results. From Eq. (23c), it is apparent that 

for source and receiver on the surface (h' = h' =0), the contribution from the s   r 

bottom slope vanishes because V, = 0. From numerical calculations for other a 

source and receiver locations, we found that the contributions from the bottom 

slope terms is always insignificant compared to the structural and curvature 

contributions. The quantity V^, can also be demonstrated to be relatively 

small compared to V and V ,. 

Figure 2 shows moment ratio, Eq. (27), versus mean bottom density p . 

The values used for p^ are typical of bottoms on the continental shelf. Based 

on data from various sources,^^ we have chosen the values of the standard de- 

viations for our random variables to be 0.1 (for a , a^,,  and a    )  and 0.2 

(for a )'    These are consistent with our earlier assumption that the random 
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variables are of the same order of magnitude and with Eq. (8b). We have kept 

the aspect ratio constant (R' = 20) in this figure, and each curve corresponds 

to different values of the two normalized (with respect to H) correlation 

lengths L' and L',. Also, we have taken the correlation lengths of the two 
e     K 

topographical random variables, L^, and L ,, to be equal. 

In the figure, L' and L',, take on values of zero and infinity. When 

L', is near zero, it means there is little correlation between bottom topo- 

graphy at any two given points. On the other hand, when L', is very large, 

the topography is correlated even at widely separated bottom locations. 

Similar statements apply for the normalized correlation length of bottom 

structure, L'.  It is apparent from Fig. 2 that varying the normalized topo- 

graphical correlation length L', has a much greater effect on M„ than varying 
K K 

L'. For example, at p = 2.1 g/cm^, when L'i increases from zero to infinity, 

there is about a 4 dB change in Mu- In contrast, varying L' has very little 

effect. The quantity L' has some influence only when the mean bottom density 

is small. Indeed, this is where the Mackenzie reflection coefficient tends to 

vary most rapidly with changes in bottom density or sound speed. However, at 

no p„ value does varying L' cause more than a 1 dB change in M^. This figure 
Z £ K 

suggests that the moment ratio is insensitive to the precise value of the hor- 

izontal correlation length for density or sound-speed variations. 

When the normalized correlation length L'.in Eq. (26d) increases, the 
K 

correlation coefficient C , increases as well. Thus, for small L',, the 
K K 

correlation between the bottom concavity at two points is small, and the 

fluctuations in concavity at these points tend to cancel. Consequently, a(I) 

decreases, causing the moment ratio to increase as L', decreases. For larger 

L',, there is more of a relationship between the concavities at two bottom 

points. The reduction in fluctuations will not be as great as for small L'l' 
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Hence, a{l)  grows as L', increases and, therefore, M decreases. The same 

type of argument applies for any of the other random variables and their 

corresponding correlation lengths. However, as suggested by Fig. 2, it is the 

variations of L', which have the largest effects on our model. With this 

picture of the effects of different values for correlation lengths, we proceed 

to investigate the influence of other parameters. In all subsequent figures 

of this paper, we will take all correlation lengths as approximately zero. 

Figure 3 illustrates the behavior of the moment ratio versus mean bottom 

density for three values of the aspect ratio R'. For a given value of R', we 

observe a general upward trend in M as p increases. This same trend can be 
K     ^ 

seen in Fig. 2, of course. For low-density bottoms, the Mackenzie reflection 

coefficient tends to fluctuate more as p varies than for larger p . This 

causes a(I) to be large, so that M in dB becomes more negative. For example, 
K 

when R' = 5, there is approximately 8 dB difference between the values of Mj, 

at p2 = 1.5 g/cm^ and p^ = 2.1 g/cm^. It might be anticipated that the var- 

iance of the intensity would become smaller as R' decreased and thus that M 
K 

would increase. This is true for high-density bottoms, but not for lower 

values of p^. j^i  p^ = i,5 g/cm3, for example, V[^  is larger for R' = 10 than 

for R' = 5. As was stated in Ref. 3, low-density bottoms have a less well- 

defined behavior as compared to higher density ones. 

In Fig. 4, we show the relative effects on moment ratio of random bottom 

structure, random bottom topography, and a combination of both features. The 

quantity M is plotted against the aspect ratio, with p^ held constant at 

1.8 g/cm^. The heavy solid curve represents the combined effects of topography 

and structure on moment ratio (i.e., all standard deviations in Eq. (22) are 

non-zero). The dashed curve corresponds to a horizontal bottom with random 

structure (i.e., a^, = a^  = o^, = 0 in Eq. (22)). Similarly, the light solid 



- 16 

curve corresponds to a structurally homogeneous bottom with random topography 

.{i.e., o = 0 in Eq. (22)). The relatively large (i.e., small negative) values 

Mj^ on the heavy solid curve for small R' indicate relatively small intensity 

fluctuations. On the other hand, the small (i.e., large negative) values of 

Mj^ for large R' correspond to large variations of the intensity about its 

mean. This same trend will be seen in Figs. 5 and 7. 

It is also apparent in Fig. 4 that for small aspect ratios (approximately 

R' < 5), the random bottom structure makes a greater contribution to M than 
K 

does the random bottom roughness. For larger ratios, however, the opposite is 

true. The dashed curve, corresponding to a horizontal bottom with random 

structure only, tends to oscillate. This is due to the large variability in 

the bottom reflection coefficient with grazing angle. The light solid curve, 

which corresponds to a structurally homogeneous bottom with roughness, is dom- 

inated by curvature effects. Because the bottom reflection coefficient does 

not depend on the interface curvature, this curve monotonically decreases with 

increasing R'. The bottom curvature tends to focus and defocus ray bundles 

through the spreading loss contribution. This causes ail)  to be greater, and 

the effect increases as the grazing angle decreases, i.e., as R' increases. 

Figure 5 is a graph which can be compared with Fig. 4. The mean bottom 

density is decreased from p^ = 1.8 g/cm3 (e.g., fine sand) in Fig. 4 to p = 

1.6 g/cm^ (e.g., silty clay) in Fig. 5. The general shapes of the corresponding 

curves in each figure are broadly similar. However, in the curves of Fig. 5, 

the moment ratio becomes more negative. This is due to the influence of the 

random structure, not to that of the topography. As we discussed in connection 

with Fig. 3, a lower-density bottom usually results in a larger value for ail). 

The smaller mean density value used for Fig. 5 also has the effect of lengthen- 

ing the interval on the R' axis in which structure contributes more to Mj, than 
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topography. This interval extends to about R' = 9 in Fig. 5, compared with 

about R' = 5 in Fig. 4. 

A three-dimensional graph is shown in Fig. 6, in which we have varied 

the standard deviations of the two dominant random variables, o and a  ,. 

This perspective figure shows how these quantities influence the moment ratio. 

The aspect ratio and mean bottom density are held constant at 10 and 1.8 g/cm^. 

Each of the standard deviations is varied from 0 to 0.2. When o , is near 
K 

zero, increasing o   has the effect of decreasing Vi^,.    As o , becomes closer to 

0.2 however, varying a   has little effect on M_. For a constant value of o , 
G K £ 

increasing o , always causes a decrease in V[ .    These types of behavior occur 

because at R' =10, the topography of the bottom has a larger influence on the 

intensity variance than does the structure. If R' were chosen, for example, 

to be less than five, then varying a would have a greater effect than 

changing a ,, because then structure dominates over topography. This was seen 

previously in Fig. 4. 

Figure 7 illustrates how the aspect ratio R' and mean bottom density p 

affect moment ratio. In fact. Figs. 3, 4, and 5 are cross-sections of Fig. 7, 

but were introduced first because of their greater ease of interpretation. 

For a given density, the dominant n = 1 (one reflection) ray has a specific R' 

value, or grazing-angle value, at which the Mackenzie reflection coefficient 

drops from a value near one to a much lower value. This occurs near the 

critical angle of Rayleigh reflection theory.^2 in turn, a large ail)  value is 

produced, and hence, a large negative value for M . The indentation in the 
K 

surface of Fig. 7 is the general consequence of this feature. As p increases, 

the value of R' at which this effect occurs decreases, since the grazing 

angle increases. For rays with n > 1, the same effect occurs, but these rays 

are attenuated by each bottom reflection and, consequently, do not have so 
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large an influence on received intensity. It can also be seen from Fig. 7 

that, for any p value, the moment ratio experiences an overall decrease as R' 

increases form 1 to 20. This decrease is most dramatic for lower density 

bottoms. 

IV.  SMALL-SCALE ROUGHNESS 

In previous sections, we assumed specular reflection from a facet bottom, 

implying facet lengths which are large in acoustic wave-wengths. In this sec- 

tion, we enhance our bottom model by superimposing small-scale roughness on the 

facets. It is not uncommon for ocean bottoms to be modeled using two degrees 

of roughness.^^"^^ 

Eckart^"^ gave a Kirchhoff solution for the acoustic signal reflected by 

a rough surface which was later modified by Clay.^^ We use Clay's method here 

to describe the sound scattered by the small-scale roughness. A more general 

approach, which reduces to Clay's results, is given by Kuperman.^^ 

We assume that the dimensions of the scattering area are much greater 

than the acoustic wavelength x,  and these dimensions are in turn much less 

than the distance to the source or to the receiver. Let y = c-- (x) be the 

deviation of the irregular surface from the smooth facet which reflects ray r . 

at its i^*^ bounce. We impose the usual conditions on this functi on: 

and 

UjjVxl  « 1 (28a) 

Id^i'jVdxl  « 1  . {28b) 

Equation  (28a)  states that the magnitude of the small-scale roughness is small 

compared with the acoustic wavelength.    The assumption given in Eq.  (28b)  is 

that the slope of y = ?..  (x)  is never large.    Because of the restriction in 

Eq.  {28b),  the reflection coefficient on any given facet is nearly constant, 

with respect to grazing angle,  for reflections in the specular direction. 
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Moreover, it has been shown that curvature of the small-scale roughness does 

not significantly affect the scattering of the acoustic wave.^o so we ignore 

this feature here. If we assume c|^ to be normally distributed with mean zero 

over the area insonified by a ray bundle, then the coherent reflection coeffi- 

cient, i.e., the reflection coefficient in the specular direction, is given 

byl8 

B|;^ = B\f  exp [-8.2^2. sin2 ^\f]  . (29) 

Here, B. . is the reflection coefficient given in Eq. (13), and \p\^-    is the 

grazing angle, defined prior to Eq. (1), that the incident ray r  makes with 
nj 

the smooth facet at its i^^ bottom reflection. The quantity o  is the root- 

mean-square displacement of the surface ?." from the smooth facet upon which 

it is superimposed, divided by the acoustic wavelength \.    We assume o  is 

small by using Eq. (28a) and approximate B.. by 

B|"^ = B\1\I  - 8.2 a2. sin2 >)) ^ (30) 

to first-order terms in a2, . 
c 

In order to incorporate Eq. (30) into our previous development, we assume 

that scattered waves at the receiver vanish because of their random phases. 

Consequently, only the wave reflected in the specular direction remains. Prior 

to inserting B_ into our equations for the mean and variance of received 

intensity, we regard a , to be the same on each facet. Also, we assume they 

are of the same magnitude as a  . The mean intensity then becomes 

N  4   'on 
Ed) = Z  E    ^nj 

n=l j=l H2rR'2 + u'2] 

16Tr2 a2 u'2 
C nj 

A2,(R'2 + U'2) 
nj "^     nj ^ -• 

(31) 

Because of our assumptions on o ,, the intensity variance remains unchanged 

from Eq. (22), at least to second-order terms in our random variables. 
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In Fig. 8 we plot moment ratio VL  versus aspect ratio R' for three values 

of o ,, 0, 0.1, and 0.2. The bottom has a mean density of 1.8 g/cm^. The a ,= 0 

curve is the same as the heavy solid curve in Fig. 4, since this value of o , 

corresponds to facets with no superimposed small-scale roughness. For R' = 1, 

varying a , from zero to 0.2 produces about a 3 dB decrease in M . However, the 

small-scale roughness in this model is essentially inconsequential for R' greater 

than about four. In other words, when the grazing angle of the dominant rays 

becomes relatively small, the small surface variation ?.. has little effect, as 

is well known. ^^ An increase in a ,  causes a decrease in Mr, for every value 

of R' in Fig. 8. This means that there is a tendency toward increased fluctua- 

tion of intensity about its mean value as a , increases. 

V. SUMMARY 

This paper is concerned with the relative effects of bottom structure and 

topography on the intensity of a received acoustic signal. We use ray theory in 

a shallow-water duct having constant sound speed and density. Both the bottom 

sound speed and density are taken to be random in the horizontal direction. The 

water-bottom interface consists initially of an ensemble of large-scale two 

dimensional facets. Each facet is assumed to possess a small random depth devia- 

tion about a mean horizontal bottom, as well as small random slope and curvature. 

Acoustic rays are specularly reflected from the facet bottom. 

Using perturbation expansions, we develop expressions for bottom loss and 

spreading loss. These results are used to derive formulas for the mean and vari- 

ance of the incoherent intensity at a point receiver for a transmitted cw signal. 

Stochastic averaging over the bottom randomness is performed to obtain the mean 

and variance of intensity. The results are sufficiently general to permit their 

use with different bottom-acoustic models. The intensity moments are modeled to 

contain arbitrary correlation coefficients for each of the random variables. To 



- 21 - 

illustrate our results, we choose to use a Mackenzie bottom model and correl- 

ation coefficients of Gaussian form. 

We are able to draw a number of conclusions from our results. For 

example, we show that the standard deviation of intensity increases as the 

correlation length of bottom structure or topography increases. This results 

from a cancelling of bottom randomness effects. Another conclusion is that 

varying the correlation length of the topography affects the moment ratio, 

the dB ratio of mean to standard deviation of intensity, more than varying 

that of the structure. Moreover, varying the correlation length of any of 

the random bottom quantities does not affect the moment ratio as much as does 

varying the aspect (range to depth) ratio R' does. Also, in general, for a 

given R' value, the moment ratio increases as the mean bottom density increases 

When considering with high density bottoms, the moment ratio tends to decrease 

as the aspect ratio increases. However, this same conclusion does not hold for 

low density bottoms. 

We found that structural variations in the bottom make a larger contri- 

bution to intensity variance than topographical variations, when the aspect 

ratio is small, less than about five. For aspect ratios more than ten, 

topographical roughness has the greater effect. When comparing effects of the 

different constituents of bottom topography, it was found that curvature 

causes significantly greater intensity fluctuations than either depth or slope 

deviations. This is a consequence of the tendency of curvature to focus and 

defocus ray bundles. Lastly, small-scale roughness is superimposed upon the 

large-scale facets, and we examined the effect on intensity induced by this 

feature. It is found for our model that only for aspect ratios less than about 

five does the added roughness significantly contribute to intensity fluctua- 

tions. The small-scale roughness tends to increase variance of intnesity. 
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FIGURE LEGENDS 

Fig. 1. "Actual" and "Ideal" rays for large-scale interface variations. 

Fig. 2. Moment ratio M^ versus mean bottom density p for four L' combinations: 

R' = 20, o, = 0^,= a , = 1, c = 1523 m/s, p, = 1.025 g/cm^. Surfaced 

source and receiver. 

Fig. 3. Moment ratio M versus mean bottom density p for three values of 

aspect ratio R': L' = L', = L' = 0. Other parameters as in Fig. 2. 

Fig. 4. Moment ratio M^ versus aspect ratio R' for three combinations of random 

variables: p = 1.8 g/cm^. Other parameters as in Fig. 3. 

Fig. 5. Same as Fig. 4, except p = 1.6 g/cm.^ 

Fig. 6. Moment ratio M„ versus the standard deviations of bottom structure 
^ R 

G and curvature o ,: R' =10, p = 1.8 g/cm^. Other parameters as 

in Fig. 3" 

Fig. 7. Moment ratio M^ versus mean bottom density p and aspect ratio R'. 

Other parameters as in Fig. 3. 

Fig. 8. Moment ratio M_ versus aspect ratio R' for three values of 

a':    p2 = 1.8 g/cm^. Other parameters as in Fig. 3. 
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